Analysis of Circulating Tumor Cells (CTCs) in Patients Across Multiple Metastatic Breast Cancer (mBCa) Cohorts Identifies Marked Inter- and Intra-Patient Heterogeneity in CTC Size, Shape, and Overall Morphology

Beverly Horn, Adam Jendrisak, Joseph Schohnjott, Ryan P. Graf, Priscilla Ottoverson, Megan Kearney, Yipeng Wang, Mark Landers, Ryan Dillamore
Epic Sciences, 9381 Judicial Dr, Suite 200, San Diego, CA 92121 ● epicsciences.com

Background

• The choice between hormonotherapy and chemotherapy is a frequent decision in the care of metastatic breast cancer (mBCa) patients.

• We previously developed quantitative measures of phenotypic CTC heterogeneity in metastatic castration-resistant prostate cancer (mCRPC) and found higher heterogeneity was associated with better survival on chemotherapy vs. targeted hormonal therapies, and the reverse was true in low heterogeneity patients (Scher et al., 2017 Cancer Research).

• We apply our previous heterogeneity methodologies to a cohort of mBCa patient CTCs to ascertain feasibility in mBCa.

Methods

• 165 blood samples from mBCa patients were processed for CTC analysis utilizing the Epic Sciences platform. Following enumeration, multi-dimensional phenotypic characterization was performed utilizing protein expression and digital pathology features.

• Features from each CTC (3760 CTCs from 144 patients; 81 HR+, 12 HER2+, 4 HR+/HER2+, 47 TNBC) were compared by unsupervised clustering. Shannon index and intrapatient variance analyses to assess the intrapatient heterogeneity among mBCa CTC phenotypes.

Schematic of Epic CTC Platform CTC enumeration, morphology, biomarker analyses and single cell sequencing workflow:
1. Nucleated cells from blood sample placed onto slides and stored in a −80°C freezer.
2. Slides are stained with cytokeratin (CK), CD45, DAPI and scanned. CTC candidates are detected by a multiparametric digital pathology algorithm followed by human reader confirmation of CTCs and quantification of biomarker expression.
3. CTCs are segmented within the DAPI and CK channels and single cell features are extracted.
4. CTCs undergo Principle Component Analysis (PCA) removal noise and redundant dimensions, and weighing features with more variance. Machine learning clustering algorithms found 7 CTC subtypes from macro trends in high-dimensional biomarkers across all CTCs from all samples in cohort, and assigned each CTC to 1 of 7 subtypes. Heterogeneity is quantified by counting CTCs per “Cell Type” in each sample, then using a standard Shannon Index to quantify CTC phenotypic diversity per patient sample.
5. Single cells are identified, relocated, captured, whole genome amplified (WGA), library prepared and low pass whole genome sequenced for Large Scale Transitions (LST), a subrogate of chromosomal instability and gene copy number alterations (CNA) (Greene et al., 2016 PloSOne).

Morphological Features Associated with CTC Subtypes

Example Cell Images of CTC Subtypes

CTC Subtypes are Associated with Breast Cancer Pathological Types

High CTC Phenotypic Heterogeneity is Common in mBCa Blood Samples

Phenotypic CTC Subtypes are Associated with Genomic Profiles

Conclusions

• Distinct CTC phenotypes are visible across mBCa patients and clustered into 7 CTC phenotypic subtypes.

• A wide range of phenotypic CTC heterogeneity is observed between and within patients.

• mBCaphenotypic CTC subtypes are associated with unique genomic profiles.

• We seek to determine if patients with high heterogeneity might be better candidates for hormonal therapy. Studies linking heterogeneity to therapeutic efficacy and patient outcome are ongoing.