

The Use of Whole Genome Copy Number Variation (CNV) to Measure Genomic Instability in mCRPC CTCs

- mutations detected from metastatic tissue biopsies.
- scarring.
- heterogeneity and/or non-tumor DNA contamination.
- patients utilizing a non-invasive, single CTC assay.

Yipeng Wang, Stephanie Greene, Angel Rodriguez, Jerry Lee, Laura Leitz, Mark Landers, Adam Jendrisak, Ryon Graf, Ryan Dittamore, Dena Marrinucci Epic Sciences, San Diego, CA

Representative Cell Line	Key Genomic Features
LNCaP	AR CNV normal (mutated); PTEN heterozygous deletion; wt p53
PC3	AR CNV normal; PTEN homozygous deletion; p53 deletion
VCaP	AR amplification; PTEN intact; p53 CNV normal (mutated)

Measurements Following Q30 filtering, representative cell FASTQ files from ~20M to 0.25M to determine the minimum number of reads required to detect LSTs and preserve the % genome altered number for PTEN for each individually, boxplots represent

Genomic Instability in PCa Cell Lines

• >1M reads/cell low pass whole genome sequencing required to detect genomic instability signature across replicate PCa cells

• %cv # of CNV ranged detected ranged from 7-20% across replicate cells • %cv # of LSTs detected ranged from 12-20% across replicate cells • Median of 4 LSTs/cell with less than <1% PGA detected in WBC control Highest genomic instability associated with p53 mutation and PTEN deletion • Highest # of LSTs detected in PC3 & VCaP, both harbor p53 alterations

• Highest % genome altered detected in PC3

- PTEN null
- p53 deletion