

Integrated Single Cell Phenogenomic Subtyping of CTCs Identify Inter-Cellular Tumor Heterogeneity (het) and Multiple Resistance Mechanisms in mCRPC Patients (pts)

Howard I. Scher¹, Ryon Graf², Adam Jendrisak², Nicole A. Schreiber¹, Brigit McLaughlin¹, Stephanie Green², Angel Rodriguez², Martin Fleisher¹, Jerry Lee², James Kelvin², Mahipal Suraneni², Yipeng Wang², Mark Landers², Ryan Dittamore²

EPIC SCIENCES www.epicsciences.com

¹ Sidney Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan-Kettering Cancer Center, New York, NY ² Epic Sciences, Inc., San Diego, CA

- chemotherapy
- clustering of genetic changes

Phenotypic CTC Subtypes are Associated with Distinct **Gene Signatures**

- showed worse prognosis on Taxanes
- is currently underway

Support: MSKCC SPORE in Prostate Cancer (P50 CA92629), the Department of Defense Prostate Cancer Research Program (PC051382), The Prostate Cancer Foundation. Mr. William H. Goodwin and Mrs. Alice Goodwin and the Commonwealth Foundation for Cancer Research, The Experimental Therapeutics Center of Memorial Sloan-Kettering Cancer Center.

B. Distribution of large scale transitions (LSTs), a surrogate of genomic instability. LST was measured as n of

Specific CTC Subtypes are Enriched in Samples with **High Heterogeneity Scores**

	Cell Type	Odds Ratio (HH/LH)	Adjusted p-Value	Enriched CNV Changes
	E	5.50	0.0027	AR Amp, MYC Amp, PTEN Loss, TP53 Loss
	G	5.22	0.0345	AR Amp, MYC Amp, RB1 Loss
	I	12.67	0.0023	MYC Amp, TP53 Loss
	К	5.64	0.0001	AR Amp, MYC Amp, PTEN Loss, TP53 Loss
	Μ	15.50	0.0074	MYC Amp, TP53 Loss

• Permutation test (with 100K simulation) was performed to estimate the overrepresentation of CTC subtypes in high heterogeneity (HH) compared to low heterogeneity (LH) patients

• These five Subtypes were more likely to be detected in high heterogeneity patients, with very low probability of being detected by chance (Bonferroni adjusted p<0.05)

• Overall, these five CTC subtypes also had a higher frequency of copy number alterations than other subtypes (E.g. TP53 loss: 30% vs. 7%; MYC gain: 52% vs. 24%)

Conclusions

Detecting specific CTC phenotypic subtypes in patients predict the relative risk of failure to ARSi and taxanes, and may

CTC subtypes (E, G, K, I, & M) are detected more frequently in high CTC heterogeneity samples (adjusted p-value = 0.05)

Phenogenomic analysis of CTC subtypes that predict for resistance to ARSi and taxanes and high heterogeneity harbor novel genomic patterns associated with differential prognosis of survival. e.g.: The presence of Cell Type K, enriched for PTEN and p53 loss, is associated with worse prognosis on ARSi and the presence of Cell type G, enriched for RB1 loss

Identifying different CTC subtypes may provide insight into disease evolution, inform treatment decisions for individual patients and guide new drug development. Longitudinal monitoring of phenotypic CTC subtypes in multiple clinical trials