A PHASE 2 TRIAL IN PROGRESS: PAMIPARIB, AN INVESTIGATIONAL PARP INHIBITOR IN PATIENTS WITH METASTATIC CASTRATION-RESISTANT PROSTATE CANCER AND A CIRCULATING TUMOR CELL HOMOLOGOUS RECOMBINATION DEFICIENCY PHENOTYPE OR BRCA DEFECTS

Simon Chowdhury,1 Joaquin Mateo,2 Mitchell Gross3, Andrew J. Armstrong4, Marcia Cruz Correa5, Josep M. Piulats6, Jean-Yves Blay7, Delcia Rivas8, Luis Quintero,9 Henry Castro, Andong Nkobena, Mark Landers,10 Robert J. Pelham,11 Mitch RapoNI,12 Robert B. Montgomery1

BACKGROUND

- Prostate cancer is one of the leading causes of cancer deaths in men.1
- Mutations in genes associated with homologous recombination deficiency (HRD), including BRCA1/2, are strongly associated with an aggressive phenotype and poor clinical outcomes.2
- Poly (ADP-ribose) polymerase (PARP) proteins are a family of proteins involved in DNA repair, genome stability, and programmed cell death.3
- Inhibition of PARP proteins allows for accumulation of unrepaired single-strand breaks, which are converted to double-strand breaks during cell division and can lead to apoptosis/cell death.4
- DNA repair can be compromised by the absence of homologous recombination (HR) components, such as BRCA1 or BRCA2.5
- Pamiparib (BGB-290) is a selective PARP1/2 inhibitor that demonstrated brain penetration, PARP-DNA complex trapping, and antitumor activity in preclinical models.6
- In patients with metastatic castration-resistant prostate cancer (mCRPC), determination of HRD mutational status is highly challenging using standard approaches.7
- DNA sequencing using tumor tissue is hampered by insufficient tissue availability and high DNA-sequencing failure rates.8
- Detection of homozygous BRCA1/2 deletions from circulating tumor DNA is challenging, and could result in missing a group of patients who could benefit from PARP inhibitor therapy.9
- Circulating tumor cells (CTCs) are shed from primary tumors during cancer progression and can be collected via liquid biopsy for further analysis.10
- The novel EPIC liquid biopsy assay uses phenotypic characterization to identify CTCs with HRD (CTC-HRD).11
- In early phase clinical studies (NCT02361723; NCT03333315), pamiparib was generally well tolerated and showed preliminary antitumor activity as a single agent.12
- These studies also established 60 mg orally daily as the recommended investigational dose.

METHODS

Overall Design and Study Objectives

- This ongoing, open-label, single-arm, global multicenter phase 2 study (NCT03712930) was designed to evaluate the efficacy and safety of pamiparib monotherapy in patients with mCRPC who are either 1) CTC-HRD+ (≥3 CTC-HRD/ml) regardless of germline or somatic BRCA1/2 mutations or 2) who have BRCA1/2 mutations regardless of CTC-HRD status (Figure 1A).13
- The primary objectives are to evaluate the efficacy of pamiparib, using Prostate Cancer Clinical Trials Working Group 3 (PCWG3) criteria, in terms of objective response rate (ORR), assessed by an Independent Review Committee (IRC), and prostate-specific antigen (PSA) response rate.14
- Key secondary objectives include duration of response by IRC, investigator-assessed ORR, time to objective response, time to PSA response/progression, duration of PSA response, time to symptomatic skeletal event, radiographic progression-free survival, overall survival, and safety/tolerability of pamiparib.15
- An exploratory objective of this study is to determine the clinical utility of the CTC-HRD assay to identify patients with mCRPC, who will derive clinical benefit from pamiparib.

CTC-HRD Test Development (Figure 2)

- Initial development of this assay used DNA sequencing of individual CTCs to build a microscopy-based classification model (Figure 2B).16
- Phenotypic features of CTCs harboring LSTs are correlated to the sequencing data to build a microscopy-based classification model (Figure 2B).17
- The final assay utilizes validated microscopy-based CTC detection technology and automated digital pathology methods to identify CTCs with an HRD phenotype.18
- Preliminary data indicates that when a threshold of ≥3 CTC-HRD+ cells/mL blood is used, ~30% of mCRPC patients are CTC-HRD+ with a hazard ratio of 0.37 (P<0.017; Figure 2C).
- This threshold was optimized in three patients with HRD+ cells vs non-HRD cells to derive a scoring system for clinical responses to PARP inhibitors (data from the NCI-9012 trial that compared abiraterone to abiraterone + veliparib in men with mCRPC; NCT01576172).19
- A similar assay platform was used to identify AR-V7 splice variants and inform clinical decisions in men with mCRPC.20
- This assay was also used to investigate LST as a biomarker of chromosomal instability and resistance to standard-of-care drugs in mCRPC.21

Patient Population

- Approximately 100 patients will be enrolled at 45 study centers in Asia, Australia, Europe, and North America.22
- Key inclusion/exclusion criteria are provided in Table 123

Treatment

- Patients will receive pamiparib 60 mg twice daily as 28-day cycles until disease progression; PO, oral; PSA, prostate-specific antigen.24

Abbreviations: BID, twice daily; BRCA1/2, breast cancer 1/2; CTC-HRD+, positive for circulating tumor cells with homologous recombination deficiency; DAPI, 4,6-diamidino-2-phenylindole; LST, large scale transitions; pGI, phenotypic genomic instability; veliparib, poly(ADP-ribose)polymerase; PSA, prostate-specific antigen; RECIST, Response Evaluation Criteria in Solid Tumors.

REFERENCES

ACKNOWLEDGMENTS

The authors wish to acknowledge the investigative center staff and study staff, as well as recognize those from Beigene who have substantially contributed to the development of this presentation. Beigene, Ltd. provided financial support for this presentation, including writing and editorial assistance by Stephen Lindsey, PhD, at OPEN Health Medical Communications (Chicago, IL).

Please address any questions or comments regarding this poster to Clinicaltrials@beigene.com