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BACKGROUND CTC SUBTYPES CLUSTER ALONG MORPHOLOGICAL FEATURES

PHENOTYPIC HETEROGENEITY AND QUANTITATION

 The choice between hormonal therapies and chemotherapy is a frequent decision in the care | . o . . Intra-patient Heterogeneity
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« 295 blood samples from mBCa patients were processed for CTC analysis utilizing the Epic
Sciences platform. Following enumeration, multi-dimensional phenotypic characterization
analysis was performed utilizing protein expression and digital pathology features.
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MORPHOLOGICAL FEATURES OF CTC SUBTYPES CHARACTERIZE

Heterogeneity Scores for 165 Patients
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1. Nucleated cells from blood sample placed onto slides and stored in a -80-C biorepository. PATHOLOGICAL TYPES BRCAZ Loss H% |. 14% i 18% lﬁ
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Slides are stained with cytokeratin (CK), CD45, DAPI and scanned. CTC candidates are CTC Subtypes b4 BCa displave: TN Loc .21; B 14; o
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confirmation of CTCs and quantification of biomarker expression. 1001 - E |00 “ F Lishest CK ex ressioxpin :
2. CTCs are segmented within the DAPI and CK channels and single cell features are extracted. o%v “uclear a?ea on average CONCLUSIONS
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4. Single cells are identified, relocated, captured, whole genome amplified (WGA), library S y responders to different targeted therapies.
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