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ABSTRACT
◥

Chromosomal instability (CIN) increases a tumor cell's ability to
acquire chromosomal alterations, a mechanism by which tumor
cells evolve, adapt, and resist therapeutics. We sought to develop a
biomarker of CIN in circulating tumor cells (CTC) that are more
likely to reflect the genetic diversity of patient's disease than a single-
site biopsy and be assessed rapidly so as to inform treatment
management decisions in real time. Large-scale transitions (LST)
are genomic alterations defined as chromosomal breakages that
generate chromosomal gains or losses of greater than or equal to10
Mb. Here we studied the relationship between the number of LST in
an individual CTC determined by direct sequencing and morpho-
logic features of the cells. This relationship was then used to develop
a computer vision algorithm that utilizes CTC image features to
predict the presence of a high (9 or more) versus low (8 or fewer)

LST number in a single cell. As LSTs are a primary functional
component of homologous recombination deficient cellular phe-
notypes, the image-based algorithm was studied prospectively on
10,240 CTCs in 367 blood samples obtained from 294 patients
with progressing metastatic castration-resistant prostate cancer
taken prior to starting a standard-of-care approved therapy. The
resultant computer vision-based biomarker of CIN in CTCs in a
pretreatment sample strongly associated with poor overall survival
times in patients treatedwith androgen receptor signaling inhibitors
and taxanes.

Significance: A rapidly assessable biomarker of chromosomal
instability in CTC is associated with poor outcomes when detected
in men with progressing mCRPC.

Introduction
Chromosomal instability (CIN), or more broadly genomic insta-

bility, is increasingly being recognized as an essential hallmark of
cancer implicated in initiation, progression, metastasis, and ther-
apeutic resistance (1, 2). CIN changes range from whole-
chromosomal alterations to structural alterations that include chro-
mosomal rearrangements and complex structural changes (3).
Aneuploidy and complex karyotypes, which are direct conse-
quences of CIN, are observed in up to 70% of all cancers including

30% of prostate cancers and 60%–80% of breast, colorectal, and lung
cancers (3, 4). They have also been shown to play a causal role in
cancer progression and the acquisition of drug resistance in exper-
imental systems (4, 5). Furthermore, analyses of large cohorts of
patients from The Cancer Genome Atlas have shown that chro-
mosomal copy-number alteration predicts for an inferior survival
and clinical outcomes across a range of tumor types including
prostate, breast, endometrial, renal clear cell, thyroid, and colorectal
cancers (6, 7).

Given that CIN is by definition a dynamic process that reflects a
cancer cell's ongoing ability to acquire chromosomal alterations, direct
measurements have been largely limited to the research setting. Proxies
or markers of CIN that have been applied in a clinical setting include
chromosomal number and structure variation by FISH, comparative
genomic hybridization, and next-generation sequencing (8). Each
method has limitations, including labor-intensiveness, high cost, and
turnaround times that are too long to impactmedical decisionmaking.
In addition, methods that rely on bulk sequencing of tumors can mask
the cellular and clonal heterogeneity arising from CIN. Assessing CIN
by sequencing at a single-cell level in a large number of cells in time to
inform clinical decisions extends these challenges even further despite
the technological feasibility of doing so.

In addition to the heterogeneity of the cell populations within a
tumor, it is increasingly recognized that metastases at different sites in
a patient often harbor different tumor subclones. The result is that a
single-site tissue biopsy is likely to underestimate the genetic diversity
of an individual patient's disease. Profiling circulating tumor cells
(CTC) at the single-cell level has the potential to capture the genetic
diversity of tumor subclones and, through serial sampling, to monitor
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tumor evolution over time (9–12). This is of particular importance in
the metastatic setting where genomic alteration rates can be high and
can increase further as the disease progresses, as is the case in tumors
with CIN.

Our objective was to develop a biomarker of CIN in CTCs that
could be assessed rapidly so that the result could be used to inform a
management decision in real time. To do so, we used the Epic
Sciences CTC isolation platform, a nonselection-based approach
that deposits all nucleated cells from a patient's blood sample onto
pathologic test slides, followed by staining and analysis with fluo-
rescent scanners that perform automated high-throughput imaging
to detect individual CTCs. In previous work, we used this tech-
nology to develop an assay to detect the presence and localization of
the androgen receptor (AR)-V7 splice variant in CTCs. The test
result was used to inform the choice of a taxane or AR signaling
inhibitor (ARSi) for men with progressing metastatic castration-
resistant prostate cancer (mCRPC) about to start a second or greater
line of therapy. Studied in two independent cohorts, use of the AR-
V7 assay to inform the choice of treatment improved patient
survival (13, 14), a demonstration of clinical utility that is rarely
shown. In our current research, we combined machine learning and
digital pathology analyses to evaluate imaging features of individual
CTCs, including the sizes and shapes of cytoplasm and nucleus, AR
and cytokeratin (CK) expression, and other features. The features
were then used to develop and validate, analytically and clinically, a
phenotypic classifier of CIN in CTCs.

The focus was the detection and determination of the number of
large-scale transitions (LST), a genomic alteration defined as chro-
mosomal breakages that generate chromosomal gains or losses of
10 Mb or more. The LST metric was chosen for its clear cross-
platform definition and frequent use as a biomarker of structural
CIN arising through homologous recombination deficiency (HRD)
associated with the presence of BRCA1/2 mutations in breast
cancer (15, 16). To do so, we developed an image-based algorithm
that uses the features of individual CTCs as input to predict the
number of LSTs (pLST) present in each cell determined by direct
single-cell sequencing. A CTC with 9 or more LSTs was scored as
having a high LST number. The technical feasibility of determining
LST number in single CTCs by next-generation sequencing has
been demonstrated (Fig. 1A; ref. 17), and to test performance, the
algorithm was applied to a separate analytic validation cohort of
blood samples from which the patient-level CIN biomarker was
defined as the presence of 3 or more CTCs in a sample that are
predicted to have 9 or more LSTs per mL of blood. Finally, we
applied the pLST algorithm to a larger clinical validation cohort for
the context of use as a prognostic biomarker.

Materials and Methods
Patients and clinical specimens

All studies were conducted in accordance with ethical guidelines
according to the Declaration of Helsinki. Patients with a diagnosis of
mCRPC in need of treatment for progressive disease provided written
informed consent to one of two Institutional Review Board–approved
biospecimen protocols, MSK 06-107 or MSK 12-245. A total of 391
patients donated one or more pretreatment blood samples for CTC
analysis. All patients were being treated at MSK between September
2012 and August 2016, had progressing mCRPC, and were in need of a
therapy change. In this study, all cells analyzed were collected from
mCRPC patients' blood and analyzed directly. No cultured primary
cells or cell lines were used.

Cohorts
Patients were retrospectively assigned to one of three cohorts:

training, analytic validation, or clinical validation (Fig. 1B). The
training cohort sample data were used to develop the phenotypic
algorithm (pLST) to predict the actual number of LSTs in a given CTC,
LSTs being a surrogate measure of CIN (15, 17). The analytic valida-
tion cohort sample data were used to independently assess the
performance of the phenotypic algorithm's predictions comparedwith
the number of LSTs determined by sequencing. The clinical validation
cohort sample data were used to determine the association of the
analytically validated pLST-based biomarker to overall survival. All
samples in the clinical validation cohort were drawn ≤30 days prior to
the start of the new therapy.

CTC identification and isolation for imaging and LST
determination

Detection and analysis of CTCs was performed using the Epic
Sciences platform as described previously (17). In brief, nucleated
cells derived from single blood draws were partitioned onto
glass slides, fixed, and then stained for CD45, pan-CK, DAPI, and
the N-terminus of the AR as described previously (13, 18). Each cell
was imaged (�3 million per slide) and CTCs were identified in silico
and confirmed by trained human technicians. A CTC was defined as
a cell with an intact nucleus that was CK(þ), AR(�), and CD45(-);
or CK(-), AR(þ), and CD45(-). For each sample, at least two slides
corresponding to the analysis of approximately 1 mL of blood were
analyzed. After imaging, each CTC selected for single-cell sequenc-
ing was isolated from the glass slide and the genomic DNA was
whole-genome amplified and sequenced on an Illumina NextSeq500
to determine gene region–specific copy-number alterations and the
number of LSTs. Additional details on the sequencing workflow are
provided in the Supplementary Methods section.

Image-based pLST algorithm training
The pLST algorithm was developed using the CTCs identified in

training cohort samples. All identified CTCs detected in this cohort
were digitally imaged and in parallel picked and subjected to single-cell
sequencing to determine the true number of LSTs within each CTC.
The cell image features [x1, x2, x3 . . . xn, (Supplementary Table S1)]
were then used to train an algorithm that predicted the ground truth
number of LSTs determined by single-cell sequencing (Y). CTC image
digital pathology features were extracted fromeach 6.8�CTC image as
described previously (18). AR and CK protein expression were mea-
sured by fluorescent intensity from secondary antibodies and were
utilized as the ratio of expression in a CTC relative to background
(cRatio). All CTC image features utilized were log10 and z-normalized
before use.

Apipeline utilizing common supervised classification and regression
algorithms was constructed that included Support Vector Machine,
Neural Net, Random Forest, and generalized linear model (GLM),
among others, to predict the number of LSTs fromCTC image features.
Ten-fold cross-validation and grid-search parameter tuning were used
to train and test performance of each algorithm class. We selected a
GLM regression model for its simplicity and relative performance to
other models based on the AUC in receiver–operator curves in pre-
dicting the categorical LST-high versus LST-low status and by com-
paring goodness-of-fit using mean squared error for predicting the
continuous LST number. Least absolute shrinkage and selection oper-
ator (LASSO) regression was used to quantify CTC image feature
importance (Supplementary Fig. S1A and S1B). After training and
cross-validation, the final model's parameters were locked.
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Included in development and analysis

(n = 373 unique patients; 447 pretreatment samples)
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608 CTCs
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(pLST) to predict LST status of CTCs 

from digital pathology features
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Figure 1.

CTC detection platform and patient flow diagram. A, CTC detection, imaging, and LST scoring. Within 24 hours of collection, red blood cells are lysed and nucleated
cells are deposited and fixed onto glass slides. Slides are then stained with antibodies against CK, CD45, and the AR N-terminus and DAPI. All cells including
leukocytes are imaged. CTCs are defined as CK(þ) CD45(�) AR(�), or CK(�) CD45(�) AR(þ). Postimaging, single CTCs are isolated using a pipette tip and
micromanipulator, then whole-genome amplified, and sequenced to determine the number of LSTs. B, Patient flow diagram describing use of the algorithm in the
training, analytic validation, and clinical validation cohorts.
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A CTC was defined as LST-high or chromosomally unstable if the
number of predicted LSTs was greater than a cutpoint determined
from the distribution of the number of LSTs in the entire cohort.
Using this cutpoint, the number of true positives, true negatives,
false positives, and false negatives were calculated and the perfor-
mance of the classifier assessed using accuracy, sensitivity, and
specificity metrics.

Analytic validation of the pLST algorithm and biomarker
definition

The performance of the pLST classifier to classify a CTC as LST-
high or LST-low was then studied in the analytic validation cohort by
comparing the predicted LST number and the number determined by
direct sequencing for accuracy, sensitivity, and specificity.

Next, to derive a patient sample–level scoring guide, a cutoff of
the number of detected predicted LST-high single CTCs was chosen
to maximize patient-level accuracy, sensitivity, and specificity in
identifying the equivalent number of LST-high CTCs by sequencing
within the blood analyzed for each patient. A cutoff expressed as the
per mL of blood equivalent was then determined prior to clinical
data analysis and served to stratify patients as pLST biomarker–
negative or –positive.

Clinical validation of the pLST biomarker and statistical analysis
The pLST classifier was applied to all of the CTCs detected in the

clinical validation cohort. If the patient had greater than the predefined
cutoff of LST-high CTCs/mL, the patient was considered CIN bio-
marker–positive. Next, biomarker status, positive andnegative patient,
was studied in relation to overall survival. Overall survival was
calculated from the start of therapy; patients lost to follow-up were

right censored. In the case of patients receiving multiple lines of
therapy, survival times were right censored from the time of initiation
of the new, most recent therapy. HRs were estimated using Cox
regression and the probabilities of survival over time were estimated
using the Kaplan–Meier method.

To assess the independent prognostic value of the CIN biomarker in
relation to the total number of CTCs and to account for other potential
confounding factors, a Cox proportional hazards model was con-
structed as described previously (13). The models included a combi-
nation of pretreatment clinical variables, a combined factor derived
fromCTC/mL ≥ 3 (median) and CIN biomarker status, and a two-way
interaction term between therapy and biomarker status. All analyses
were performed using R software (v3.6) along with the “survival” and
“survminer” packages.

Results
Patient characteristics

Patients with progressing mCRPC needing to start a new systemic
therapy contributed one or more pretreatment blood samples from
September 2012 until August 2016. Among the distinct training,
analytic validation, and clinical validation cohorts, a total of 447 blood
samples were collected from366 unique patients (Table 1;Fig. 1B). All
samples were analyzed using the Epic Sciences platform (Fig. 1A).
Samples from the training cohort were used to develop the phenotypic
pLST (predicted Large-Scale Transition) scoring algorithm. Those
from the analytic validation cohort were used to test the performance
of the algorithm to determine the cell-level cutoff that defines the pLST
biomarker, and those from the clinical validation cohort to associate
the CIN biomarker result with outcomes following treatment with

Table 1. Patient and sample demographics by cohort and CTC detection frequency.

Training
cohort

Analytic validation
cohort

Clinical validation
cohort

Cohort size, age, and survival
No. of samples 26 54 367
No. of unique patients 26 46 294
Age at baseline, median (range), years 70 (48–91) 70 (49–86) 69 (40–89)
No. of patients with unique death events (%) N/A N/A 175 (59.5)

Next therapy—no. of samples (%)
ARSi 14 (54) 18 (33) 245 (67)
Taxane 8 (31) 11 (20) 122 (33)
Radiuma 2 (8) 0 (0) 0 (0)
Platinuma 2 (8) 4 (8) 0 (0)
Other 0 (0) 21 (39) 0 (0)

Therapy line—no. of samples (%)
First-line treatment 6 (23) 21 (39) 129 (35)
Second-line treatment 7 (27) 10 (19) 101 (28)
Third-line or greater treatment 13 (50) 23 (43) 137 (37)

Pretreatment baseline lab values
Albumin, median (range), g/dL 4.1 (3.6–4.8) 4.1 (3.2–4.8) 4.2 (2.4–4.6)
Hemoglobin, median (range), g/dL 10.7 (7.0–14.3) 12.2 (9.2–14.6) 12.3 (7.1–151)
Lactate dehydrogenase, median (range), U/L 257 (123–976) 228 (124–890) 218 (52–2115)
PSA, median (range), ng/mL 88.2 (0.1–947.0) 15.1 (0.05–3022) 38.33 (0.06–16275)
Alkaline phosphatase, median (range), U/L 128.5 (51–1043) 104 (28–511) 108 (40–2170)
Presence of liver and/or lung metastases, no. of samples (%) 3/26 (11.5) 12/54 (22.2) 58/367 (15.80)
CTC Detection
Total CTC/mL, median (range) 20.7 (3.6, 934.3) 7.75 (1.1, 595) 3 (0, 1149.9)

Abbreviations: ARSi, androgen receptor signaling inhibitor; N/A, not applicable; PSA, prostate-specific antigen.
aSingle agent or combination.
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standard of care–approved drugs, including ARSi and taxane-based
chemotherapy. All patients gave signed informed consent to an IRB-
approved protocol before starting study procedures.

CTC detection and LST determination in the training cohort
From 26 patients, 768 CTCs representing a range of sizes, shapes,

and protein expression levels of the N-terminal AR and CK were
identified, isolated, and submitted for DNA whole-genome ampli-
fication and low-pass sequencing to determine the number of LSTs
within each cell based on the number of contiguous regions of
chromosomal breakage of at least 10 Mb. The overall success rate
was 79% (608 of the 768 cells submitted). The method utilizes
utilizes commercially available reagents and was previously devel-
oped using LNCaP, PC3, and VCaP prostate cancer cell lines along
with mCRPC patient samples (17). Contiguous regions of chro-
mosomal breakage of at least 10 Mb were used to calculate the
number of LSTs in CTCs. The imaging features were then used to
train a pLST algorithm to predict the number of LSTs detected by
single-cell genomic sequencing (Fig. 2). Representative images of
LST-low and LST-high CTCs are shown in Fig. 2A. The results
from the 608 CTCs sequenced in the training cohort showed an
approximate bimodal distribution of LSTs comprising an LST-low
group (0–8 LSTs) and an LST-high group (9 or more LSTs) per cell
(Fig. 2B). The observed bimodal distribution of LSTs in CTCs is
consistent with the distribution found in tumor tissues obtained
from patients with HRD-associated cancers (breast, ovarian, and
prostate) sequenced with the FDA-approved MSK-IMPACT assay.
Notable is that HRD-associated tumors with BRCA1/2 loss of
function predominantly had 9 or more LSTs, while tumors from
other lineages and those with intact BRCA1/2 status predominantly
had LST numbers near or at zero (19).

pLST Algorithm training
Next, 19 digital pathology features were extracted from each

segmented and cropped 4-channel cell image (CD45, CK protein,
DAPI, AR) that describe the size, shape, image texture, and protein
expression within the cytoplasm and nucleus (Fig. 2B). Significant
correlations were observed between the CTC image features and
number of LSTs determined by single-cell whole-genome sequenc-
ing (Fig. 2B; Supplementary Fig. S2). CTCs with a high number of
LSTs generally, although not exclusively, trended to smaller, more
circular, and to express higher levels of AR and CK proteins, and
have a higher nuclear texture or heterogeneity as measured through
the entropy metric within the DAPI channel. Entropy is an image
texture feature that measures pixel intensity randomness, where a
high entropy broadly indicates a higher heterogeneity in image
texture (Supplementary Fig. S3).

The observed relationship of CTC image features and number of
LSTs in a cell made it possible to develop a computer vision algorithm
using the image features to predict the number of LSTs (Fig. 2C). To do
so, a GLM was selected because of its simplicity and ability to directly
determine the relative contribution of each feature to the final model.
The GLM model uses multivariate linear regression and provided
comparable performance to other linear and nonlinear models tested
including a Neural Net, Support Vector Machine, and Random
Forest (20). Once training and cross-validation were completed,
LASSO regression was used to rank CTC image feature importance
(Supplementary Fig. S1). The top five CTC image features in the GLM-
based classifier were AR intensity, CK intensity, nuclear entropy,
nuclear speckles, and the major axis length of the cytoplasm. While
these features were themost important contributors, it should be noted

that other features such as nuclear area or circularity were predictors
but dropped out of the model during LASSO regression once the top
ranked contributors were incorporated. The final locked algorithm
predicted the number of LSTs on a continuous basis with an AUC of
0.83. Furthermore, when the cutoff of 9 or more was applied to
define an LST-high CTC biomarker for potential clinical applica-
tion, a single-cell accuracy of 77%, sensitivity of 68%, specificity of
84%, and positive predictive value (PPV) of 78% was observed
(Fig. 2D).

Analytic validation and performance of the pLST algorithm
The pLST classifier's performance was then evaluated in a separate

analytic validation cohort that included 54 unique blood samples not
used in the training cohort from 46 patients prior to starting a new line
of therapy fromwhich 542 CTCs were successfully sequenced (success
rate¼ 87% of the 625 CTCs submitted;Table 1). Here, an AUCof 0.77
was observed and the locked pLST algorithm classified CTCs into the
LST-high or LST-low groups with an accuracy of 70%, sensitivity of
66%, specificity of 74%, and PPV of 77% at the single-cell level
(Fig. 2E). Summary results for both the AV and training cohort are
presented in Supplementary Table S2.

Copy-number alterations in pLST-high and pLST-low CTCs
CTCs classified as pLST-high or -low in the analytic validation

cohort were then studied for the relationship between the copy-
number alterations found in gene regions involved in prostate
cancer oncogenesis by direct sequencing. A total of 104 prostate
cancer–related genes were qualitatively selected for analysis based
on literature and database searches of known CNV altered
genes (17). The percentage of CTCs harboring each gene region
alteration is shown in Supplementary Fig. S4. With the limitations
of low-pass sequencing in mind, gains or losses in prostate cancer–
related gene regions were determined using the previously pub-
lished analysis pipeline developed in prostate cancer cell lines and
mCRPC patient samples (17). For this analysis, 91.5% (496 of the
542) successfully sequenced CTCs were found to have at least one
copy-number alteration in a prostate cancer–related gene region
and Fig. 3A presents a heat map of the top 30 altered gene regions
along with other prostate cancer gene ROIs, including those that
regulate DNA replication, cell-cycle, proliferation, apoptosis, DNA
repair, and prostate lineage specification, and their relation to actual
and predicted LST numbers. Full genome CNV plots are also
shown in Fig. 3B. That the copy-number losses and gains were in
regions where prostate cancer–related genes are typically found
supports the validity of our finding, and were unlikely to be due to
random sequencing dropout or polymerase overamplification, a
limitation of single-cell whole-genome sequencing technology. The
result showed that, in the analytic validation cohort, 44% of the
CTCs (115/262) classified as pLST-high and 23% (63/280) of the
pLST-low had BRCA2, BRCA1, or ATM copy loss (P < 0.0001).
Whether this observation is causal and representative of functional
HRD or a consequence of increased CIN in LST-high cells is
not clear. Furthermore, 29% (76/262) of the pLST-high CTCs
and 8% (21/280) of the pLST-low CTCs had AR gene amplification
(P < 0.0001), aligning with the observation that the intensity of AR
protein expression is also a significant predictor of high LSTs. A
boxplot comparing LSTs, predicted LSTs, AR copy-number status,
and protein expression intensity is presented in Supplementary
Fig. S5. Ongoing in separate work is the investigation of the
relationship between AR amplification in tissue and ctDNA to that
of CTCs. Other genes of interest that showed association with
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Comparison of LST score with CTC digital pathology features in the training cohort
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Training and analytic validation of the pLST classifier. A, Image gallery of representative CTC images in the LST-low (≤8 LSTs) and LST-high (≥9 LSTs) groups.
B, Extraction of CTC image features and comparison of those features with the number of LSTs in each CTC. Pearson correlation coefficients are shown.
C, Schematic of the development of phenotypic LST-high classifier. D, Performance of the pLST algorithm in the training cohort. E, Performance of the
pLST algorithm in the analytic validation cohort. The cross-hair in each ROC curve denotes the pLST-high/low cut-off point from which sensitivity, specificity,
and accuracy were calculated.
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pLST-high classification were AURKA and MYC gene amplifica-
tion. A heatmap identical to Fig. 3 using CTCs in the training
cohort is presented in Supplementary Fig. S6.

A patient-level scoring guide to define the CIN biomarker–
positive patient strata

We then went on to determine a cutpoint for the number of
pLST-high CTCs in an individual sample needed to score a sample
as pLST biomarker–positive and pLST biomarker–negative (CIN-
positive or CIN-negative). For each patient at a given pLST-high

CTC cutpoint, a sample was reported as true positive when both the
predicted number of pLST-high CTCs and the actual number of
LST-high CTCs by single-cell DNA sequencing were greater
than the cutpoint. This two-component CIN biomarker was needed
because the PPV of the algorithm to identify true LST-high
CTCs was only 76% in the analytic validation cohort. However,
when a specific cutoff for the number of LST-high CTCs present
in a sample was included, the PPV increased to over 95% at the
patient level after more than one pLST-high CTC was detected
(Fig. 4A and B).
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Development of a patient-level scoring guide to define the CTC-CIN biomarker. A, Comparison of the number of predicted LSTs with the actual number of LSTs by
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Patient-level accuracy, sensitivity, specificity, and PPV were all
found to be optimal when 3 or more LST-high CTCs were detected
in a patient sample from the analytic validation cohort. Here it is
important to note that a total of 6 million nucleated cells are
analyzed for each patient (see Materials and Methods), correspond-
ing to about 1 mL of blood. Requiring multiple observations to
define the LST-high CTC phenotype improved performance metrics
to the level needed for a biomarker assay result that could be used in
a clinical practice setting to predict sensitivity to a drug class and
inform treatment selection. At a cutoff of 3 or more LST-high CTCs
per mL of blood, the patient sample–level accuracy was 86%,
sensitivity 83%, specificity 100%, and PPV of 100% (Fig. 4B) and
the overall frequency of patients predicted to have ≥3 LST-high
CTCs per mL of blood exceeded 40% (Fig. 4C).

CTC-CIN biomarker positivity prior to therapy initiation
associates with early drug resistance and poor survival

In the clinical validation cohort, a total of 10,240 CTCs were
analyzed in the 367 samples from 294 unique patients with mCRPC.
Overall, using the cutoff of ≥3 CTCs predicted to have ≥9 LSTs per mL
of blood, 22.3% of the samples (82/367) were CIN biomarker–positive,
a rate that increased in frequency by line of therapy (Supplementary
Table S3). A bar plot comparing total CTCs and pLST-high CTCs by
line of therapy is presented in Fig. 5A and a scatter plot of pLST-high

CTCs versus total CTCs is presented in Supplementary Fig. S7. All
were pretreatment samples obtained a median of 3 days (range, 0–30)
prior to starting either an ARSi such as enzalutamide and abiraterone
or a taxane-based chemotherapy, such as docetaxel or cabazitaxel.
Supplementary Table S4 compares pretreatment clinical features
of patients between therapy classes, Supplementary Table S5 com-
pares CIN biomarker positivity by therapy class, and Supplemen-
tary Table S6 compares clinical features between CIN biomarker–
positive and –negative strata.

To further examine the CIN biomarker for the context of
use of prognosis, we assessed the relationship of CIN biomarker
status with overall survival. By Kaplan–Meier analysis, patients
who were CIN biomarker–positive pretreatment had a signifi-
cantly shorter median overall survival than those who were
CIN biomarker–negative following treatment with both an ARSi
(8.5 vs. 39.2 months, P < 0.0001) or taxane (9.4 vs. 18.1 months,
P ¼ 0.0003; Fig. 5B and C).

To determine the prognostic value of the CIN biomarker in the
context of total CTC counts and other previously established prog-
nostic factors, a multivariate Cox proportional hazard models were
constructed. A base model containing only clinical and laboratory
variables showed that higher line of therapy, LDH and PSA, and the
presence of liver and/or lung metastases was associated as expected
with shortened survival times (Table 2).
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The CIN biomarker (positive/negative) and CTC count (high/low
by median dichotomization; median ¼ 3/mL) were then combined
into a single factor with levels CIN-negative/CTC-low (50% of
patients), CIN-positive/CTC-high (22% of patients), and CIN-
negative/CTC-high (28% of patients). For comparison, Kaplan–
Meier curves for CTC-high and CTC-low by therapy class are pre-
sented in Supplementary Fig. S8. Added to the base multivariate
model, the CIN biomarker and total CTC covariate CIN-positive/
CTC-high status remained significant (HR ¼ 2.9; 95% CI. 2.1–4.2;
P < 0.001). However, CIN-negative/CTC-high status applied in a
similar fashion was not (HR ¼ 0.9; 95% CI, 0.6–1.3; P ¼ 0.5). Similar
results were shown in a third model that included a two-way inter-
action of therapy class and CIN/CTC factors where CIN-positive/
CTC-high status was strongly prognostic (HR ¼ 5.0; 95% CI, 3.1–7.9;
P < 0.001) while survival was improved for CIN-positive/CTC-high
patients treated with a taxane relative to an ARSi (HR ¼ 0.3; 95% CI,
0.2–0.6; P ¼ 0.001). In contrast, no significant prognostic difference
was found for CIN-negative/CTC-high patients on taxane compared
with ARSi (HR ¼ 0.8; 95% CI, 0.4–1.6; P ¼ 0.47; Table 2). Finally, a
fourth model was constructed using factors with total CTC counts
dichotomized at the top 20th percentile, identifying a similar number
of patients compared with a CTC-CIN biomarker to create a new set of
levels. In this model, CTC-CIN was again found to be significantly
associated with poor OS (CIN-positive CTC-high HR ¼ 3.1; 95%
CI, 2.2–4.5; P < 0.001) and (CIN-positive CTC-low HR ¼ 3.0; 95%
CI, 1.7–5.1; P < 0.001; Supplementary Table S7).

Taken together, the results confirm that the CIN biomarker is a
strong prognostic marker of overall survival, independent of other
known clinical features and total CTC number. It also suggests that
CIN biomarker positivity, while prognostic of a shorter survival, may
predict for a more favorable outcome with taxane-based chemother-
apy relative to an ARSi, based on the significant statistical interaction
observed between CIN biomarker positivity and therapy class
(Table 2); however, additional studies will be needed to determine
the utility of CTC-CIN as a predictive biomarker for drug response and
treatment selection.

Discussion
A critical unmet need in the management and treatment of

patients with progressing mCRPC is for biomarkers that can be

assessed in a timeframe to inform a management decision. Here we
developed an image-based algorithm to create a CTC biomarker of
chromosome instability in a phlebotomy sample that assesses
morphologic features and protein expression levels by fluorescent
staining to determine the number of LSTs in a single CTC. The
biomarker was developed using a training cohort consisting of
blood samples from patients with progressing mCRPC about to
start a new line of therapy and validated in a separate analytic
validation cohort to determine sensitivity, specificity, PPV, and a
patient-level cutoff of positivity.

The pLST algorithm classifies individual CTCs as LST-high (9 or
more predicted LSTs in a cell) or LST-low (8 or fewer) with an
accuracy in the range of 70%–80% based on features extracted from
CTC images. Morphologically, LST-high CTCs identified by the
algorithm are typically, but not exclusively, smaller, rounder, have
higher CK and AR expression, and greater heterogeneity in nuclear
texture as measured through DAPI intensity (e.g., higher nuclear
entropy). The CTC CIN biomarker is reported as positive if 3 or
more cells in a sample are predicted to be LST-high, shown with a
PPV of >95% at the individual patient level in both the analytic and
clinical validation cohorts based on confirmation by direct sequenc-
ing, and strongly associates with a shortened survival. The require-
ment for detection of multiple cells overcomes the observed per-
formance at the single-cell level that precludes making a call on a
single cell (AUC of 0.77 in ROC analysis and specificity of 74% in
the independent AV cohort).

Clinical validation was achieved in a larger independent cohort in
which pretreatment CINbiomarker–positivitywas again shown to be a
strong independent prognostic marker for inferior overall survival
independent of the line of therapy or the class of therapy received.
The association of the CIN biomarker with overall survival was
stronger than total CTC number, the presence of visceral metastasis,
or other routinely used prognostic factors in the progressing mCRPC
setting. Overall, the results are consistent with previous reports
showing the relationship of prostate cancer cell and nuclear morphol-
ogy to overall genomic and/or chromosomal instability and poor
outcome (21–23), including a recent analysis of a large cohort of
tissue hematoxylin and eosin sections relating nuclear texture hetero-
geneity to poor outcome in prostate cancer (24).

Many links between phenotype and genomic and/or chromosomal
instability have been established. Aneuploidy in a single cell estimated

Table 2. Clinical validation cohort: multivariable Cox proportional hazard analyses of overall survival.

Base model CIN/CTC Model Therapy interaction model
HR (95% CI) P HR (95% CI) P HR (95% CI) P

Treatment (taxane, ARSi) 1.2 (0.8–1.7) 0.426 1.1 (0.8–1.6) 0.587 1.8 (1.1–2.9) 0.018
Line of therapy > 2 (Y, N) 2.4 (1.7–3.5) <0.001 2.3 (1.6–3.3) <0.001 2.3 (1.6–3.2) <0.001
Lactate dehydrogenase > 250 U/L (Y, N) 3.1 (2.2–4.2) <0.001 2.6 (1.8–3.6) <0.001 2.4 (1.7–3.4) <0.001
PSA > 20 ng/mL (Y, N) 1.8 (1.2–2.6) 0.002 1.7 (1.2–2.5) 0.005 1.8 (1.2–2.6) 0.003
Age > 65 years (Y, N) 1.1 (0.8–1.4) 0.645 1.3 (0.8–1.5) 0.420 1.2 (0.9–1.6) 0.330
Liver and/or lung mets pretreatment (Y, N) 1.5 (1–2.1) 0.043 1.6 (1.1–2.3) 0.011 1.6 (1.1–2.3) 0.012
CIN/CTC status (pos. or neg./high or low)

Negative/high — 0.9 (0.6–1.3) 0.510 1.0 (0.6–1.6) 0.902
Positive/high — 2.9 (2.1–4.2) <0.001 5.0 (3.1–7.9) <0.001

Therapy interaction (taxane, ARSi)
Negative/high, taxane — — 0.8 (0.4–1.6) 0.470
Positive/high, taxane — — 0.3 (0.2–0.6) 0.001

Abbreviations: ARSi, androgen receptor signaling inhibitor; CIN, chromosomal instability; CTC, circulating tumor cell; mets, metastases; PSA, prostate-specific
antigen.
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by quantifying nuclear size is one example, where greater nuclear area
correlates with greater total DNA content (25, 26). Increased AR
signaling has been shown to enhance TOP2B recruitment to sites of
TMPRSS2-ERG genomic breakpoints to promote TOP2B-mediated
dsDNA breaks (27), and to be involved in regulating DNA damage
checkpoint signaling in prostate cancer (28, 29). Similarly, high
expression of the most abundant CKs, CK8 and CK18, has been
shown to associatewith resistance tomultiple cancer therapies (30–32),
and may be a marker of increased PI3K/Akt pathway activation in
tumor cells (33). On the other hand, it should be noted that reducedCK
marker and/or AR expression is also observed in a subset of CRPCs
that are resistant to next-generation AR-targeted therapies by a
transition to an epithelial-to-mesenchymal (EMT) like state or lineage
plasticity (33). One likely explanation is that the definition of a CTC
used here required CK orAR expression, possibly excluding CTCs that
have undergone EMT/lineage plasticity (34–36). Future studies that
include additional CTC markers, such as synaptophysin, chromogra-
nin A, and vimentin, may help capture this group of CTCs (34–36).
Given the weak association between CK expression and LSTs in CTCs
seen here, more study is needed to understand the complex relation-
ship between epithelial marker and AR expression and the status of
genomic instability.

The CIN and nuclear-localized AR-V7 protein biomarkers
(13, 14, 37) assessed in individual CTCs along with a previously
reported biomarker of CTC heterogeneity (18) are all associated with
resistance to ARSi and a poor prognosis. Future work will focus on the
combined and independent frequency of the AR-V7, CIN, and other
biomarkers to determine the added value of using two or all three
measures to determine which patients will do poorly with ARSi and
other classes of drug (38, 39). Separately, others have reported that the
presence of CIN in breast cancer, as determined by several indepen-
dent methods, may be a marker for resistance to taxane treatment
as well (40, 41), and prospective efforts are ongoing to test whether
targeting CIN with DNA damage–directed therapies such as a
PARP inhibitor (NCT03712930) or platinum-based agents would be
beneficial.

It should also be recognized that LST number is only one
functional measure of HRD, and other measures of genomic
instability exist including telomere allele imbalance and loss of
heterozygosity, as well as other genomic consequences of deficiency
in DNA repair mechanisms. Also, it is likely that CTCs with a high
number of LSTs include diverse genomic aberrations including
aneuploidy or other mechanisms relating to chromosomal insta-
bility regardless of HRD gene status. Accordingly, models of
BRCAness or HRD typically include HRD-associated mutational
signatures in addition to metrics such as LST. As a result, a high
number of LSTs here may not always relate to functional HRD. On
the other end of the spectrum, the precise origin of cells with only a
few alterations is not always clear and reflects the technical limita-
tions in CTC characterization. In bulk sequencing of localized and
some metastatic prostate cancers low or absent copy-number
burden in prostate cancer have been observed, possibly due to the
lower coverage, and the overall burden was shown to be associated
with disease extent (6, 7). Although more recent deep whole-
genome and whole-transcriptome sequencing has revealed a wide
diversity of alterations in the vast majority of metastatic biopsies
sequenced that would be potentially missed with the single CTC
sequencing technology used here (42). Furthermore, data on the
single-cell nature of copy number or LST burden in single tumor
cells isolated from biopsy in a large cohort is lacking and technical

limitations require that the data generated to date be interpreted
with caution.

Collectively, we observe a relationship between CTC morphology
and CIN, and demonstrate the feasibility of developing and clinically
validating a robust image-based CTC-CIN biomarker that can be
applied with rapid turnaround time (estimated at 2–3 days) to
individual patients.
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